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A new method for quantitative assessment
of hand muscle volume and fat in
magnetic resonance images
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Abstract

Background: Rheumatoid arthritis (RA) is characterized by systemic inflammation and bone and muscle loss.
Recent research showed that obesity facilitates inflammation, but it is unknown if obesity also increases the risk or
severity of RA. Further research requires an accurate quantification of muscle volume and fat content.

Methods: The aim was to develop a reproducible (semi) automated method for hand muscle segmentation and
quantification of hand muscle fat content and to reduce the time consuming efforts of manual segmentation. T1
weighted scans were used for muscle segmentation based on a random forest classifier. Optimal segmentation
parameters were determined by cross validation with 30 manually segmented hand datasets (gold standard). An
operator reviewed the automatically created segmentation and applied corrections if necessary. For fat
quantification, the segmentation masks were automatically transferred to MRI Dixon sequences by rigid registration.
In total 76 datasets from RA patients were analyzed. Accuracy was validated against the manual gold standard
segmentations.

Results: Average analysis time per dataset was 10 min, more than 10 times faster compared to manual outlining.
All 76 datasets could be analyzed and were accurate as judged by a clinical expert. 69 datasets needed minor
manual segmentation corrections. Segmentation accuracy compared to the gold standard (Dice ratio 0.98 ± 0.04,
average surface distance 0.04 ± 0.10 mm) and reanalysis precision were excellent. Intra- and inter-operator precision
errors were below 0.3% (muscle) and 0.7% (fat). Average Hausdorff distances were higher (1.09 mm), but high
values originated from a shift of the analysis VOI by one voxel in scan direction.

Conclusions: We presented a novel semi-automated method for quantitative assessment of hand muscles with
excellent accuracy and operator precision, which highly reduced a traditional manual segmentation effort. This
method may greatly facilitate further MRI image based muscle research of the hands.
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Background
Rheumatoid arthritis (RA) is a chronic disease character-
ized by inflammation of the synovial membrane (syno-
vitis) and loss of bone, cartilage and muscle [1]. In
contrast to bone, muscle is not yet in the spotlight of
RA research, although studies show that muscle atrophy
is a hall mark of RA [2, 3]. Compared to healthy con-
trols, RA patients have an accelerated loss of fat-free
skeletal muscle, so called rheumatoid cachexia [4] and
impaired hand motor performance [5], probably caused
by muscle fiber degeneration.
It is well known that obesity is associated with systemic

inflammation, because adipose tissue is a source of pro-
inflammatory cytokines and triggers inflammatory re-
sponses [6, 7]. In patients with RA, muscle fat infiltration
of the thigh contributes to low physical function and activ-
ity [8]. Another study reported lower calf muscle area and
density in RA patients compared to controls and also
found associations between greater joint destruction and
greater muscle deficits. Whether these findings can be ex-
plained by a cause-effect relation between muscle fat infil-
tration and RA is a pending question [9], as so far the
interrelationships of inflammation and muscle dysfunction
[10] in RA is poorly understood.
Obviously, the quantification of muscle volume and fat

content is the first step to address this question. The
hand with its multitude of joints and associated synovial
fluids is usually most severely affected by RA and is
probably the prime target for the investigation of RA re-
lated muscle and fat characteristics. However, the small
volume and multiple different tissues like bone, tendons,
vessels and muscle require a sophisticated segmentation
for the quantification of muscle volume and adipose tis-
sue in the hand.
Manual segmentation is tedious and for complicated

tasks can take hours. In contrast, a fully automated seg-
mentation may be desirable to supersede the need for
manual interactions, but in our experience rarely works
in elderly subjects, in which pathological conditions
often define most of the population variance. In the
hand many small and rapidly changing anatomical struc-
tures further complicate a segmentation. In particular, in
clinical studies, a careful review of any automatic seg-
mentation process with the options of manual editing by
experts is typically required. Thus, in this paper we de-
scribe a method, which provides an automated initial
segmentation, with two aims:

� To significantly reduce overall processing time
compared to a standard manual slice by slice based
segmentation approach

� To provide manual editing, but to limit these
interactions to a minimum in order to improve
reanalysis precision.

The core of the automated process is based on a ran-
dom forest algorithm running on standard clinical T1
weighted magnetic resonance (MR) images. It exploits
the characteristic muscle feature of a distinct grey value
throughout the acquired stack of MR images. 3D editing
after the automatic segmentation part can be performed
using a set of tools developed earlier [11]. Fat quantifica-
tion is then done using 2-pt Dixon (MR) images of the
hand.
To the best of our knowledge such a method for hand

muscle segmentation has not been published yet. So far
studies on muscle and fat quantification mainly targeted
the thigh, where simple threshold based techniques to
separate subcutaneous adipose tissue (SAT), muscle and
the femoral bone worked well [12]. A more advanced
approach used a combination of fuzzy clustering, mor-
phological operations and active snakes to segment the
deep fascia lata of the thigh muscles [13] to further dif-
ferentiate SAT from intermuscular adipose tissue. An-
other study [14] used a random walk graph-based
formulation with incorporated prior knowledge of shape
to segment the individual muscles of the thigh.

Methods
Patient details
MR hand scans of 76 outpatients with RA (37 males, 39
females), were acquired at the Rheumatology Outpatient
Clinic of the University of Erlangen. Apart from the
diagnosis of RA, no other inclusion or exclusion criteria
were applied. Patient characteristics are shown in
Table 1.

MRI scans
This study utilized two different MR sequences – a T1
weighted scan and a two-point Dixon scan, described in
detail below. These two sequences were part of the
standard hand protocol of the Rheumatology Outpatient
Clinic of the University of Erlangen. The scans and the
protocol were not tailored to this study, but rather part
of clinical routine and were typically performed once an-
nually. The scans were performed on the dominant hand
of the patient. The patient consent form included the

Table 1 Patient characteristics

n = 76 Mean SD Min Max

Age [y] 61 14 26 87

Disease duration [y] 8 7 1 34

BMI 25.6 4.2 17.5 36.7

DAS28 2.7 1.2 0.3 5.6

ESR [mm/hr] 17 16 1 71

CRP [mg/L] 6 11 0 59

Abbreviations: SD standard deviation, BMI body mass index, CRP C-reactive
protein, DAS28 Eular disease activity score, ESR erythrocyte sedimentation rate
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agreement to also use these data for research purposes
(Ethics approval 52_14B of the Medical Faculty of FAU
Erlangen-Nuremberg).
MR imaging was performed on a 1.5-Tesla MR system

(MAGNETOM Aera, Siemens Healthcare GmbH, Erlangen,
Germany) with a hand/wrist radio frequency 16-channel
coil. Subjects were positioned prone with head first.
The protocol consisted of a standard axial fat saturated

T1w turbo spin echo (TSE) sequence (Matrix size: 320 ×
320, Voxel size: 0.5 × 0.5 × 3.0 mm3, Slices: 64, TR: 760
ms, TE: 13 ms) and an axial T2w two point Dixon TSE
sequence (Matrix size: 320 × 320, Voxel size: 0.5 × 0.5 ×
3.0 mm3, Slices: 30, TR: 3040ms, TE: 78 ms, TD: 0 ms).
Throughout this paper, these two sequences are referred
to as T1 weighted and Dixon sequences.
The Dixon sequence produces a fat and water images

[15] calculated from two acquired spin echo images -
one with water and fat signals in phase, the other out of
phase. These two images are used to calculate the pure-
water Vwater and pure-fat images Vfat. Applying equation

V f f ¼ V f at

Vwater þ V f at
�1000‰ ð1Þ

results in a quantitative fat fraction (FF) image. This
image assigns the percentage of fat (Fig. 1b) to every

voxel. The fat fraction intensity values range from 0 to
1000, which corresponds to 0% to 1000‰ fat per voxel.

Image processing overview
Muscle segmentation was performed in the T1 weighted
scans (Fig. 1a), because the muscle boundary is difficult
to detect in Dixon fat images (Fig. 1b). The main com-
ponent of the automated segmentation was a random
forest classifier.
It was trained on 30 randomly chosen datasets, which

had been segmented manually by a medical expert (gold
standard). The trained RF was subsequently used to seg-
ment muscle in all 76 datasets. These results were again
reviewed by a clinical expert and edited as necessary. The
30 gold standard datasets were used for the validation of
accuracy. 14 of the 76 datasets were used for precision
analysis. The two distinct domains of the method are
depicted in Fig. 2 and consist of the following:

1. Random forest training
2. Segmentation workflow

� Pre processing of T1 scans to remove image
inhomogeneities

Fig. 1 a Transversal slice of a T1 weighted fat suppressed MRI hand scan in the metacarpal region. b Corresponding slice of a quantitative Dixon
fat fraction image. The grey value of each voxel corresponds to a fat ratio, where 1 grey value equals 0.1%
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� Segmentation of hand cross sectional area (CSA)
� Random forest segmentation of hand muscle
� Rigid multimodal registration of segmentation mask

to Dixon fat image

Random forest training is required once only and
learns the RF to detect muscle. The following sub chap-
ters describe these steps in detail.

Random forest training
Random forest (RF) is a well-known ensemble learning
method from machine learning [16], but is also widely
used for image segmentation [17–19]. Before being able
to used it for classification, it must be trained on train-
ing data.
A RF consists of an ensemble of decision trees of an

arbitrary but set number and are trained for a specific
problem using training data. The RF input are features,
which are calculated for each voxel. Usually a set of dif-
ferent features is created for each voxel. The RF output

are labels, which are ‘muscle’ and ‘background’ in our
study. Background in our case is everything except
muscle, i.e. air but also soft tissue, bone, tendons etc.
During the RF training, features and their corresponding
labels have to be provided, so the RF is able to learn its
decisions. Randomness is introduced by picking a ran-
dom subset of the available feature-label pairs and a ran-
dom subset of features for each decision node of each
tree. The determination of the optimal RF parameter set
(ƤRF), i.e. the number of trees, the maximal tree depth
and the number of samples per decision node, was part
of the training. The number of used features per node
was empirically set to the square root of the number of
features as typically used for RF.

Feature description
Features are the image ‘properties’ based on which the
RF makes its decision. In this study the following fea-
tures were used and calculated for each voxel of the T1
image:

Fig. 2 Overview of the RF training (a) on 30 randomly chosen datasets from the cohort, and of the segmentation workflow on all 76 datasets,
utilizing the trained RF (b)
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� Mean grey value and standard deviation of 2D (in-
plane) neighborhoods

� Mean grey value and standard deviation of 3D
neighborhoods

� Gradient magnitude by Sobel operator
� Extended Local Binary Pattern
� Gabor filter

Mean grey values and standard deviations were calcu-
lated in voxel neighborhoods with different radii. Since
the ratio between in-plane voxel size and slice thickness
was 6, 2D and 3D neighborhoods were differentiated. In
the 2D case, only neighboring voxels in the slice itself
were considered; voxel radii were 1, 2 and 3 in city block
distance. In the 3D case, voxels of the two adjacent slices
were taken into account, too. In-plane voxel radii were
4, 5 and 6 in city block distance.
Extended Local Binary Pattern (ELBP) are 2D texture

descriptors calculated for each slice individually. They are
invariant to monotonic intensity changes and require little
processing time [20]. Two specific ELBP pattern encode
intensity relationships of the grey value of a voxel with the
mean grey value of the image (ELBP_CI) and of a neigh-
borhood with a specific radius r around the voxel (ELBP_
NI) (Fig. 3). Two other pattern encode radial (ELBP_RD)
and angular (ELBP_AD) grey value differences around the
voxel. These two radial pattern were calculated using sam-
pling in polar coordinates around the center voxel (Fig. 3).
Sample points S were characterized by the radius r and an
angle α, S=S(r, α). The angle was determined by the num-
ber of samples, which were arranged equidistantly on a
circle with radius r. The sample grey values were linearly
interpolated. Radial differences (RD) were calculated from
sample pairs with same angle but different radii, S(r1, αn)
and S(r2, αn) and angular differences (AD) from samples
pairs with same radius but different angles, S(r, αn) and

S(r, αn + 1). The determination of the optimal ELBP param-
eter set (ƤELBP), i.e. the number of samples and the circle
radii, was part of the training and described below.
The Gabor filter response for each voxel was calcu-

lated from an in-plane kernel around the voxel. In this
area, the image grey values were modulated by a 2D si-
nusoidal wave and convoluted by a Gaussian function.
In our case the sinusoidal was rotated in-plane by 0°,
45°, 90° and 135°, resulting in 4 different Gabor filter
outputs. These were applied to each slice individually.
As for ELBP, the optimal Gabor filter parameter set
(ƤGF), i.e. the Gaussian σ, the sinusoidal wavelength (λ)
and the kernel size, was determined by the training.

Training
The training workflow is depicted in Fig. 2a. Aim of the
RF training is the determination of the optimal parameter
set Ƥ, as the union of the above mentioned parameter sets:
Ƥ = ƤRF ∩ ƤGF ∩ ƤELBP. For the training, 30 datasets were
randomly selected from the cohort for which a clinical ex-
pert manually outlined the hand muscle to provide the
correct labels used as gold standard. Since intensities of
the same tissue differ among MR scans (even if obtained
from the same scanner and corrected by N4ITK, see
below), the T1 scans had to be normalized for comparable
features across datasets. This normalization was per-
formed according to Eq. (2), where V and Vnorm were the
original and normalized voxel grey values, and Vmuscle and
Vcort were the grey values of the peak maxima of cortical
bone and muscle in the grey value histogram, respectively:

Vnorm ¼ V −Vcort

Vmuscle − Vcort
�100 ð2Þ

The normalized distance between Vmuscle and Vcort

was chosen to be 100 intensity units. Vmuscle and Vcort

Fig. 3 The in-plane sample points of three of the four 2D extended local binary pattern. a Intensity difference between the mean of the
neighboring sample points on a circle (red) and the central voxel. b Intensity difference between sample points with two different radii. c
Intensity difference between sample points with same radius but different angle
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were obtained by a watershed-like thresholding of the
histogram values, until the two maxima were left. The
features described in the prior section were calculated
using these normalized grey value images.
Ƥ was determined by an iterative process involving 7-

fold cross-validation (CV-7). For this purpose, the 30
datasets were split into two subsets with a 6:1 cardinality
ratio: a training set of 26 (≈30/7) and a validation set of
4 datasets. Initially, a sensible value range for each par-
ameter of Ƥ was specified, for example, the number of
RF trees, was varied between 1 and 150. Afterwards, all
parameters of Ƥ were set to the start values, forming a
set Ƥ’. Then the RF was trained on the training set with
25 datasets, using Ƥ’. In a subsequent validation step, the
RF was used to segment the 4 datasets of the validation
set and the resulting segmentation was compared to the
gold standard using the Dice ratio as similarity metric.
In the end, one of the parameters of Ƥ’ was changed to
the next value in the specified range, thus forming a new
Ƥ´, with which the RF was trained and validated again,
till all possible parameter permutation had been tested.
The training result for each parameter set Ƥ’ was de-

scribed by the Dice ratio D:

D ¼ 2 Rj j∩ Mj jð Þ
RþMj j ð3Þ

It quantified the percentage of overlap between the
tested RF segmentation of the 4 validation datasets (R)
and the corresponding manual segmentation (M). The
training finished with picking the parameter set Ƥ’ with
the highest average value of the Dice ratio. In our case, a
Dice ratio difference of 0.1% meant that on average
about 500 voxels were classified differently.

Parameter value ranges
The optimal number of trees was determined by CV-7
using a range of 1 to 150 trees. Similar, the samples per
decision node was varied from 1 to 0.00001% of the total
number of variables, which in our case resulted in 125,
371 to 1 feature-label pairs.
Input parameters for Gabor filters (ƤGF) were size of

the 2D Gabor kernel (given by a pixel window of Sx x
Sy), wavelength of the sinusoidal wave and standard de-
viation of the Gaussian. The following parameter ranges
were used: Kernel size: 3 × 3 to 26 × 26 pixel window di-
mension; wavelength: 0.01 mm to 4mm; standard devi-
ation 0.01 mm to 4mm.
Parameters for ELBP (ƤELBP) were circle radius, num-

ber of samples on the circle and radius of the second,
smaller circle for the spatial relationship. The radius of
the second circle was empirically set to half the radius of
the first one. CV-4 was used with the following ranges:

Radius of the first circle: 0.5 to 5.5; number of samples:
4 to 28.

Segmentation workflow
The trained RF was used to segment all 76 datasets. The
segmentation workflow (Fig. 2b) is described in more
detail in the following subsections.

Pre processing of T1 scans
MR images are often distorted by bias fields, caused by
inhomogeneous magnetic fields of the coils. These image
distortions were corrected in a pre processing step using
the N4ITK algorithm [21], which is an improvement of
the well-known and established N3 (nonparametric non-
uniform intensity normalization) approach [22].

Segmentation of hand cross sectional area
The segmentation of the hand CSA was performed by a
succession of basic image processing methods: first a
threshold was used to roughly divide the T1 weighted
image into background and hand. After N4ITK
normalization described above, background intensities
were around 10 and hand intensities around 500 units.
For the particular scanner and MR acquisition protocol
used in the study, a threshold of 70 was used. This re-
sulted in an image containing one or more volumes of
interests (VOI): one large volume of the hand and, due
to image acquisition artifacts, multiple small volumes
outside the hand VOI, where intensities were also higher
than 70. These VOIs were smoothed by a 3D morpho-
logical opening. Finally, the hand VOI, which was always
the largest VOI, was extracted.

Hand muscle segmentation
For segmentation, the features described above were cal-
culated for each voxel using the optimal parameters ƤGF
and ƤELBP determined by the RF training. The trained
RF (using ƤRF as determined by the RF training) classi-
fies each voxel into muscle and background, leading to a
raw (i.e. without post processing) muscle segmentation.

Post processing of muscle segmentation
The raw segmentation was post processed by a morpho-
logical dilation with radius 1, followed by island extrac-
tion, where islands (directly connected muscle voxels)
with a size smaller than 10 voxels were discarded. Fi-
nally, a Gaussian function f(μ,σ) was fitted to the grey
value histogram of the muscle segmentation mask and
voxels with grey values outside the range [μ ± 3σ] were
excluded from the segmentation. The underlying idea of
this procedure was to include a wider area of voxels into
the segmentation mask and then remove wrongly in-
cluded voxels by the Gaussian fit. The result of the auto-
mated procedure is shown in Fig. 4a. The resulting
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muscle segmentation was reviewed by a clinical expert
and manually edited if necessary.

Volume of interests
The volume of interest (VOIs) are hand volume VH and
muscle volume VM, obtained from the hand CSA and
the muscle segmentation mask, respectively. In order to
increase their longitudinal and cross sectional compar-
ability, these two VOIs were manually limited to the
metacarpal region defined by the metacarpal bone
(MCP) III. For this purpose, the clinical expert had to
set the proximal and distal MCP III boundaries. This
could be achieved by navigating to the corresponding
two slices in a transversal view.

Fat quantification
Fat was quantified using the Dixon fat fraction image.
Since muscle was difficult to detect in the FF image, the
muscle segmentation mask obtained using the T1 scans
was transferred to the FF image via multimodal rigid
image registration (Fig. 4b). The used similarity metric
was mutual information as described by Mattes et al.
[23], optimized by the gradient descent method. In the
segmentation VOI the average and the absolute fat con-
tent was calculated.

Validation of accuracy
Accuracy of the RF based segmentation was determined
using the 30 gold standard datasets. Segmentation masks
were compared between the manual and the RF ap-
proach using three different image metrics: the Dice ra-
tio (Eq. 3), the average surface distance (Eq. 4) and the
Hausdorff distance (Eq. 5). The average surface distance
is the average of the distances from all points of one to
the corresponding closest point of the other surface:

davg ¼ 1
Aj j

X

a∈A

min
b∈B

d a; bð Þf g ð4Þ

For d the Euclidean metric was used. The Hausdorff
distance h is the maximum of the individual distances,
i.e. the maximum local distance between the two seg-
mentation masks:

h ¼ max
a∈A

fmin
b∈B

d a; bð Þf gg ð5Þ

Reanalysis precision
For the determination of reanalysis precision errors,
three operators analyzed 14 random data sets once
(interoperator) and one operator analyzed the same 14
data sets three times (intraoperator). Reanalysis precision
errors were calculated as root mean square average of
standard deviation (RMS_SD) and coefficient of

Fig. 4 a Automated CSA (yellow) and muscle segmentation (red). This serves as input for the review and manual correction step by the clinical
expert. b CSA (green) and muscle segmentation (orange) transferred to the Dixon image via rigid registration
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variation (CV) of individual data sets [24]. Precision was
calculated for the hand segmentation in the T1 weighted
scans, which depended on the manual determination of
the MCP III length and potential manual segmentation
corrections. Additionally the precision of the registration
based fat quantification was calculated.

Implementation details
The method was embedded in the Medical Image Ana-
lysis Framework (MIAF, Institute of Medical Physics, Er-
langen, Germany). Implementation was done in C++
with the help of the Insight Segmentation and Registra-
tion Toolkit (ITK [25]) and the Open Source Computer
Vision library (openCV [26]). For the analysis, a com-
puter with a 3.4 GHz quadcore processor and 16 GB
RAM was used.

Results
Random forest training
The manual hand muscle segmentation used as gold
standard took 2.5 h ± 0.5 h per dataset. Random forest
training for each parameter set Ƥ’ took between 15 min
(for a RF with 7 trees) and 4 h (for a RF with 150 trees).
The processing time mainly depended on the RF tree
count. Since no user interaction was needed, the training
was fully automated with an output of the Dice ratio for
the individual parameter sets to file. The optimal param-
eter set Ƥ leading to the highest Dice ratio of 96% are
summarized in Table 2.

Hand muscle segmentation
The N4ITK pre-processing and the hand muscle seg-
mentation was automated and did not need any user in-
put. Pre-processing took 30 s ± 10 s. The segmentation
took 2 min ± 0.2 min, of which the RF based part de-
scribed required about 90% of the time.

User interaction
The user interaction for determining the MCP area
could be completed in less than 30s. Manual segmenta-
tion editing was necessary in 69 of the 76 datasets. This

was mostly limited to deleting segmented forearm mus-
cles or thicker layers of skin and was not considered te-
dious by the operator (see Fig. 5 bottom row). The
manual editing per dataset took 7 min ± 5min. Multi-
modal registration to Dixon sequence took 1 min on
average. The registration quality was visually checked;
no dataset needed further adjustments. All 76 datasets
could be analyzed conveniently and the results were
considered appropriate, as judged by the medical expert.

Accuracy
Accuracy results based on the comparison to the 30 gold
standard datasets are listed in Table 3.
High Hausdorff distance values were observed in scan-

ning direction at the proximal and distal ends of the an-
alyzed VOIs. A closer inspection showed, that high
Hausdorff distances were caused by variations of the
manual placements of the MCP III borders to define the
analysis VOIs.

Reanalysis precision
Inter- and intraoperator reanalysis precision errors for
muscle segmentation and fat quantification are summa-
rized in Table 4.

Discussion
We presented a novel, highly accurate and precise seg-
mentation method for hand muscles in T1 weighted fat
suppressed MR scans, which was based on Random For-
est classifiers. Muscle fat quantification was measured
after multi-modal image registration from T1 weighted
to 2-pt Dixon sequences. The two main outcomes of the
described method were the large reduction of required
user interaction time per dataset and a high accuracy
and reanalysis precision. The clinical relevance may be
high, since this approach provides a realistic perspective
to integrate quantitative muscle assessments in research
and clinical routine. Such studies can provide new
insight of the interaction between RA and muscle. Ex-
amples are the relation between the inflammatory poten-
tial of intramuscular adipose tissue with inflammatory
pathways of RA, the pathophysiological mechanisms of
hand muscle strength training by physiotherapy and ex-
ercise, the effect of pharmaceuticals like drug-modifying
anti-rheumatic drugs (DMARDs) on the hand muscle, or
the comparison of RA and age related muscle degenera-
tive processes.
The hand comprises many different tissues, partitioned

into compartments of different size and shape. Separat-
ing muscle from these tissues by manual outlining is a
tedious and very time-consuming task, often impeding
or even prohibiting even smaller studies. Image process-
ing methods can reduce the analysis time tremendously.
The method developed in this paper proposes an

Table 2 Optimal parameter set Ƥ as determined by RF training

RF number of trees 30

RF maximal tree depth 30

RF samples per node 0.0001%

GF kernel size 21 × 21

GF Gaussian sigma 1

GF Sinusoidal wavelength 1

ELBP (inner) radius 3 (1.5)

ELBP sample 8

Optimal parameter set Ƥ, showing the highest average Dice ratio during the
validation step of the RF training
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automated muscle segmentation to the user, most often
a rheumatologist, for review and optional manual edit-
ing. Its aim was not a substitution of a clinical expert re-
viewer, but to decrease interaction time. The overall
manual interaction time per dataset could be reduced
from about 2.5 h (gold standard muscle segmentation) to
about 15 min per dataset.
The identification of the poximal and distal delimiting

transversal slices of the MCP III bone was straightfor-
ward, because the joint areas showed a characteristic
pattern in the transversal view. For example Fig. 5 top
row shows the three transversal slices covering the distal
MCP III joint. Panel A shows the characteristic rect-
angular shape of the distal MCP III bone. Panel C shows
the first slice of the proximal phalange, while panel B
displays the transversal slice through the joint in be-
tween, with visible synovial fluid. In the majority of cases
segmentation correction was limited to removal of parts
which were wrongly classified as muscle, since they

showed similar intensity characteristics. Figure 5 bottom
row shows three common examples: panel D shows the
area between MCP I (thumb) and MCP II (index finger),
in which layers of skin were wrongly classified as muscle.
In panel E, subcutaneous areas above the MCP III bone
were included into the muscle segmentation. Panel F
shows the thenar segmentation in the most proximal
slice of the muscle VOI. The segmentation in this slice
was leaking into inter-bone areas and subcutaneous
layers.
Accuracy of the RF segmentation was excellent. The

average surface distance (0.04 mm) was low, and about

Fig. 5 The top row shows the three transversal slices of the distal MCP III joint: a with characteristic rectangular MCP III shape, b with round joint
shape and synovial fluid (green arrows) and c with shape of proximal phalange. The bottom row shows three common classification errors,
which required manual correction: d shows segmented skin layers between MCP I and II (green arrows), e shows segmented subcutaneous areas
close to the MCP III bone (green arrow) and f shows leaking segmentation into joint area (green arrow) and skin (light blue arrows)

Table 3 Accuracy results

n = 30 Mean SD Min Max

D 0.9810 0.0442 0.8937 0.9998

davg [mm] 0.0400 0.104 0.0010 0.4428

h [mm] 1.094 1.610 0.0324 3.76

Abbreviations: SD standard deviation, D dice ratio, davg average surface
distance, h Hausdorff distance

Table 4 Inter- and intraoperator reanalysis precision errors

Hand volume Muscle volume

Interoperator 5.0 mm3 0.19% 1.5 mm3 0.24%

Intraoperator 3.4 mm3 0.13% 0.35 mm3 0.05%

Fat content Fat fraction

Interoperator 364.4 mm3 0.60% 0.09% 0.07%

Intraoperator 41.6 mm3 0.10% 0.006% 0.04%

MCP III length

Interoperator 0.98 mm 0.12%

Intraoperator 1.2 mm 0.15%

Inter- and intraoperator reanalysis precision errors of hand and muscle
volume, fat quantification and MCP III length. Precision errors are given as root
mean square averages of standard deviations and coefficients of variation
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one magnitude smaller than the in-plane voxel size (0.5
mm). The average Dice ratio was high (98%). The max-
imum Hausdorff distances were observed in scanning
direction at the proximal and distal ends of the analyzed
VOIs. Given the image slice thickness of 3 mm, the
higher values for h corresponded to about one voxel in
slice direction. It turned out, that for those scans the
analysis VOI between the gold standard and RF based
segmentation was shifted by one slice in scan direction.
On the other hand, this did not affect D or davg, since
the muscle volumes in the boundary slices are very small
compared to the total muscle volume. As the proximal
and distal border of the analysis VOI are selected by the
operator, an automation of this step will likely further
decrease Hausdorff distances.
Reanalysis precision of the segmentation was excellent.

As expected, intraoperator was better than interoperator
precision. Interestingly, intraoperator precision for hand
volume was worse than for muscle volume. Thus, varia-
tions of the operator defined MCP III length affect hand
more than muscle volume. Surprisingly, this precision is
worse for intraoperator compared to interoperator.
Nevertheless, the RMS_SD of the MCP III lengths is
much smaller than the slice thickness of 3.3 mm. Thus,
the user interaction did not have major impact on the
analysis precision.
The interaction was limited to removal of skin and

subcutaneous parts, which were clearly distinguishable
from the muscle. Thus it could be done without altering
the main muscle segmentation. Reason for these wrongly
classified parts are the similar mean grey value and their
deviation and texture, compared to the muscle tissue.
Reanalysis precision of the fat quantification via registra-
tion was excellent. Interoperator precision of the total
fat content (0.6%) was slightly higher than the other
measured variations. Small inaccuracies of the registra-
tion to the Dixon sequence may lead to the inclusion of
e.g. subcutaneous fat, explaining the higher precision
error. Since the total muscle volume is big enough, the
precision of the fat fraction measurement is still
excellent.
The method was based on datasets of RA patients

only. This would be a limitation to address clinical ques-
tions as for example raised in the introduction. For a
clinical study also the sample size were small. However,
in this study an efficient segmentation method to be
used in a clinical study was proposed. For this purpose a
control group of healthy subjects adds little value. A
method based on scans from RA patients with impaired
muscle seems to be well generalizable to healthy sub-
jects. Since the inflammation in RA patients is mainly lo-
cated in and around the synovial joints, which are not
part of the segmentation, the inflammation will to the
best of our knowledge not influence the measurement.

Furthermore, the used cohort of outclinic patients spans
a wide age range and a large range of disease duration,
making it an ideal candidate for developing such a
method. For fat quantification, an additional MR Dixon
sequence was added to the standard clinical hand
protocol.
With respect to segmentation, a fuzzy clustering based

approach like in [13] was discarded, because the grey
value histogram of the hand could not be reliably parti-
tioned into separate clusters. Even more elaborate ideas
in [14] were not considered, because a distinction be-
tween different hand muscle groups, e.g. thenar and
hypo-thenar, was not the topic of the current study. An-
other idea tested was based on a multi atlas: the 30
manually segmented gold standard MR scans were com-
bined to a multi atlas. New segmentations were gener-
ated by registration of each atlas to the new image.
However this approach was abandoned due to the high
shape variability of the hand during the scans. Thus,
methods incorporating shape information were not fur-
ther considered.

Conclusions
We have developed a new highly precise method to seg-
ment hand muscle. In combination with quantitative fat
measurements obtained from Dixon sequences the intra-
muscular fat content can be determined. This is a pre-
requisite for further studies to investigate and quantify
the impact of muscle fat infiltration on RA and vice
versa. Especially the question if obesity is associated with
RA or even accelerates RA progress can now addressed
as a larger amount of data can analyzed in a reasonable
time.
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