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Abstract

The activation of antigen specific T cells during an immune response is a tightly regulated process at the level of
both costimulatory and coinhibitory receptors. One such coinhibitory receptor or checkpoint inhibitor which has
received much attention in the field of oncology is the programmed cell death protein 1 (PD-1). Blockade of PD-1
or its ligand PD-L1 has proven successful in the treatment of a wide variety of cancers, therefore highlighting an
important role for this pathway in anti-tumour immune responses. However, a caveat of PD-1 therapy and boosting
anti-tumour immune responses is the development of self-reactive T cells which can lead to the induction of
various autoimmune or inflammatory diseases, referred to as immune- related adverse events (irAEs). The
emergence of rheumatological irAEs such as Inflammatory Arthritis (IA) in recent years has highlighted the
importance of PD-1 in maintaining self-tolerance. Furthermore, the emergence of rheumatology related irAEs raises
an important question as to how defects in this pathway can contribute to spontaneous rheumatological disease.
In this review, we describe the biological distribution, function and regulation of the PD-1 pathway, its potential
role in IA and irAE related IA.
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Background
It is widely appreciated that costimulation of T cells via
antigen presenting cells (APC) is an essential step in
boosting the immune system and inducing antigen spe-
cific T cell responses. Costimulatory receptors such as
CD80 and CD86, expressed on the surface of APC, bind
the CD28 molecule on T cells, driving proliferation and
cytokine production. Following resolution of infection,
coinhibitory receptors become upregulated to prevent
destruction of host tissues and to restore homeostasis
[1]. Therefore, both positive and negative signals are re-
quired to regulate T cell function. Programmed cell
death protein 1 (PD-1) acts as a negative regulator or
immune checkpoint inhibitor (ICI) of T cell responses.
The PD-1 axis acts as an essential pathway to restore

tolerance and prevent the accumulation of self-reactive
T cells [2]. This review centres on the PD-1 pathway, its
long-appreciated role in tolerance and more recent ad-
vances on its role in autoimmune diseases and cellular
metabolism. Furthermore, we will examine the regula-
tion of this checkpoint inhibitor in Inflammatory Arth-
ritis (IA), while discussing the emergence of IA in ICI
treated patients in the cancer setting.

PD-1 expression, signalling and regulation
PD-1 (also known as CD279) is a 55 kDa type I trans-
membrane protein belonging to the CD28 superfamily
of immunoreceptors. It is primarily expressed on im-
mune cells such as T, B and NK cells, in addition to
monocytes, macrophages and dendritic cells (DC). How-
ever, to date, studies exploring PD-1 signalling and its
functions have been performed predominantly on T
cells. While PD-1 is usually absent on naïve T cells, its
expression following antigen engagement of the T cell
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receptor (TCR), is significantly upregulated [3, 4]. Once
this antigen is sufficiently cleared, the PD-1 receptor is
then subsequently downregulated. However, during pe-
riods of chronic infection or indeed cancer, where elimin-
ation of antigen in its entirety is inefficient, PD-1
expression remains high. Previous studies have highlighted
that in these settings of chronic antigen encounter (i.e.
chronic infection and cancer), T cells become exhausted
rendering them unable to secrete cytokines, proliferate or
perform their effector functions [5, 6]. In this setting, high
expression of PD-1 is a hallmark of exhausted T cells [7].
PD-1 interacts with two known ligands, PD-L1, also

known as B7-H1 or CD274 and PD-L2, also known as
B7-DC or CD273. PD-L1 is expressed on a wide variety
of cell types including T and B cells, macrophages, DC
and mast cells, in addition to being expressed in tissues

such as heart, lung, kidney and liver. The expression of
PD-L2 however, appears to be more restricted, being
detected only on APCs such as macrophages and DC,
where its expression is regulated by cytokines including
IFN-γ, GMCSF and IL-4 [8, 9]. The expression of PD-L1
is regulated in response to numerous cytokines such as
type I and type II interferons, IL-10, IL-17, IL-6, IL-4,
IL-1β and IL-27 [10–13]. In addition to regulation by
the aforementioned cytokines, PD-L1 expression is also
induced by a number of signalling pathways and pattern
recognition receptors. Specifically, NFκB, MAPK, HIF
and STAT3 have all been implicated in PD-L1 induction
[12, 14–16]. Moreover, following engagement of the pat-
tern recognition receptors TLR4 and TLR3, PD-L1 ex-
pression is also regulated [17, 18]. PD-1 preferentially
ligates to PD-L1 over PD-L2 for reasons not fully

Fig. 1 Mechanisms of action of PD-1. During immunological synapse formation, ligation of PD-1 with PD-L1 leads to the recruitment of SHP-2 at
the ITSM site of PD-1 and subsequent dephosphorylation of PI3K, AKT and RAS dampening down TCR mediated signalling, top left panel. Due to
inhibition of PI3K and RAS, PD-1 can change the metabolic profile of the T cell by limiting GLUT-1 expression and mitochondrial availability of
glucose, favouring fatty acid oxidation over glycolysis, top right panel. There is a paucity of data on the role of B cell PD-1, however it has been
suggested that PD-1 leads to inhibition of SYK resulting in reduced B cell proliferation and cytokine production following B cell receptor (BCR)
mediated activation, bottom left panel. A recently proposed mechanism of action for macrophage PD-1 expression is binding to PDL-1 in cis and
therefore limiting available PD-L1 for ligation with T cell PD-1, bottom right panel
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understood at present. While PD-1:PD-L2 has a higher
binding affinity compared to PD-1:PD-L1, PD-L2 is gen-
erally expressed at lower levels than PD-L1, thus favour-
ing a PD-1:PD-L1 partnership [19]. Following ligation
with PD-L1, activated PD-1 can antagonize the TCR sig-
nal transduction pathway through several mechanisms.
Firstly, PD-1 is expressed as a monomer on the cell sur-
face, where it consists of an extracellular
immunoglobulin-like binding domain, a transmembrane
region and a cytoplasmic domain which contains two
tyrosine motifs – an inhibitory motif (ITIM) and an
immunoreceptor switch motif (ITSM) [20]. A conform-
ational change in the PD-1 receptor is induced following
ligation to PD-L1, thus resulting in the phosphorylation
of both tyrosine motifs - ITIM and ITSM by Src family
kinases [21–23]. Subsequently, SHP-1 and SHP-2 tyro-
sine kinases are recruited, resulting in the dephosphory-
lation of several kinases which can inhibit both TCR and
CD28 mediated signals leading to a reduction in T cell
proliferation, survival and cytokine production [24–28]
(Fig. 1, top left panel). Bidirectional signalling following
PD-L1 ligation may also occur, however, studies into this
area are limited, in part due to the lack of evidence iden-
tifying intracellular signal transduction pathways down-
stream of PD-L1 activation. Until recently, no
identifiable cytoplasmic signal transductions motifs were
identified on PD-L1. However, a recent study by Gato-
Canas et al. elegantly identified functional regulatory sig-
nal motifs within the intracytoplasmic domain of PD-L1
which may be responsible for PD-L1 reverse signalling
[29]. While the specific signalling pathways induced by
PD-L1 reverse signalling is unclear, effects of PD-L1 acti-
vation on APC have been reported. DC treated with sol-
uble PD-1 (sPD-1) exhibit decreased maturation profiles
and increased production of IL-10 [30]. Moreover, within
the context of inflammatory disease, autoantibodies to
PD-L1 have been identified within the serum of Rheuma-
toid Arthritis (RA) patients which can facilitate bidirec-
tional PD-L1 signalling on T cells. Specifically, PD-L1
activation on T cells induced increased secretion of IL-10,
in addition to a small increase in IFN-γ secretion [31].
The regulation of PD-1 expression on T cells is

dependent on the context of antigen exposure, whereby
acute or chronic infection (or the persistence of tumour
antigen in the cancer setting) dictates the transcriptional
pathways used to regulate its expression. Following T cell
activation through the TCR, the inducible transcription
factors, nuclear factor of activated T cells 1c (NFAT1c)
and Notch are responsible for the initial expression of PD-
1 in both CD4+and CD8+ T cells [32, 33]. However, these
transcription factors are dispensable for the maintenance
of PD-1 expression during chronic infection. The tran-
scription factor forkhead box protein O1 (FoxO1) has
been identified as a key regulator of PD-1 expression

during chronic inflammation, whereby high expression of
FoxO1 inhibits T-bet expression [34]. Given that T-bet is
a previously identified repressor of PD-1, inhibition of T-
bet via FoxO1 leads to the accumulation of PD-1 on T
cells [35]. NFAT1c has also been implicated in driving
PD-1 expression in B cells [36]. Moreover, in addition to
T and B cells, the regulation of PD-1 has also been exam-
ined in macrophages, whereby NFκB signalling mediates
PD-1 expression following TLR stimulation [36]. While
PD-1 is mainly upregulated on T cells in response to anti-
gen via TCR signalling, antigen independent PD-1 regula-
tion has also been described. Kinter et al. demonstrated an
induction in PD-1 expression on peripheral blood T cells
in response to the common gamma chain cytokines IL-2,
IL-7, IL-15, and IL-21 [37]. Furthermore, anti-
inflammatory cytokines such as IL-10 and TGF-β have
also been shown to regulate PD-1 expression on T cells
[38, 39].

PD-1 and tolerance
The first evidence for the key role of PD-1 in regulating
T cell tolerance was discovered following the generation
of PD-1−/− mice. PD-1 deficient T cells were hyperproli-
ferative and upon introduction of the lpr mutation, PD-
1−/− mice developed more severe lupus like disease com-
pared to PD-1+/+ littermates [40]. PD-1 is expressed by
CD4−CD8− double negative (DN) T cells during thymic
development [41]. In the absence of PD-1, there is a re-
ported increase in CD4+CD8+ double positive (DP) T
cells, providing evidence for a PD-1 mediated augmenta-
tion of positive selection in the thymus. The effect of
PD-1 on thymic T cell development is not monospecific
either, since PD-1 exerts a negative effect on the selec-
tion of the TCR β chain that can lead to bias of the T
cell repertoire [41]. In a more recent study, Jiang et al.
demonstrated that PD-1 limits the escape of high affinity
autoreactive CD4+ T cells from the thymus. The authors
tracked individual autoreactive T cell clones transferred
to lymphopenic recipient mice and observed that PD-1
expression can limit the expansion of autoreactive T
cells in specific tissues, therefore creating a link between
PD-1 deprivation and autoimmunity [42]. Upon antigen
recognition, T cells become arrested by APC, preventing
their migration away from the immunological synapse
thus enabling appropriate T cell-APC signalling to
occur. Following T cell activation and cytokine produc-
tion, T cells can subsequently regain their motility and
minimise cytokine production. During these T cell-APC
interactions, T cell PD-1 expression is upregulated and
the T cell fine tunes the time spent at this immuno-
logical synapse. In the absence of PD-1, the length of the
T cell-APC interaction increases, therefore resulting in
increased pro-inflammatory cytokine production [43].
The effect of PD-1 on T cell velocity and motility is
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specific to PD-1 and potentially dependent on antigen
availability, with CTLA-4 (Cytotoxic T lymphocyte
antigen-4) not exhibiting a similar effect [44]. Interest-
ingly, PD-1:PD-L1 and PD-1:PD-L2 interactions are po-
tentially not equal in their capacity to maintain
peripheral T cell tolerance. In a mouse model of dia-
betes, PD-L1 blockade inhibited T cell tolerance, while
PD-L2 blockade did not [45]. PD-1 is rapidly upregu-
lated following TCR engagement and can effectively
block T cell transition from naïve to effector T cell,
however anergic T cells have a similar PD-1 expression
level to effector T cells and do not become invigorated
following PD-1 blockade [46, 47]. PD-1 blockade can
also affect T cell chemokine expression by enhancing ef-
fector T cell CXCR3 expression, therefore inducing mi-
gration to the target tissue [47].
In addition to the capacity of the PD-1:PD-L1 axis to

regulate effector T cell responses, emerging evidence
suggests a key role for PD-1 in the development and
function of T regulatory cells (Treg). Tregs can regulate
the immune response by utilising contact dependent and
contact independent mechanisms of action. These cells
are characterised by high expression of the transcription
factor Foxp3 and the IL-2 receptor α chain (CD25) [48].
Treg cells perform immunosuppressive functions in a
contact dependent manner through CTLA-4. CTLA-4 is
constitutively expressed by Treg cells and binds with
high affinity to CD80 and CD86 leading to decreased
availability of CD28 mediated costimulation and T cell
activation. In addition to CTLA-4, PD-1 ligation has also
been reported to maintain expression of Foxp3, with
PD-L1 being essential for the in vitro induction of Treg
cells through downregulation of the mTOR pathway
[49]. PD-1 engagement of Th1 cells in vivo has been
shown to induce plasticity and lasting conversion of Th1
cells to Tregs, which is dependent on intact downstream
signalling of PD-1 [50]. The immunosuppressive capacity
of Tregs is not restricted to the T cell compartment,
with Treg cells being able to suppress activation and
autoantibody production specifically of autoreactive PD-
1+ B cells in a PD-1:PD-L1dependant manner [51].
The effect of PD-1 on immune tolerance is not re-

stricted to T cells, some B cells, macrophages and DC
also express PD-1, however the role(s) of PD-1 expres-
sion on these cells appear pleiotropic and remain poorly
understood. Recent murine studies indicate that tumour
associated macrophages (TAM) maintain high expres-
sion of PD-1 that correlate negatively with their capacity
to phagocytose tumour cells [52]. PD-1 expressing TAM
maintain an M2-like phenotype with high expression of
CD206. These cells are potentially infiltrating macro-
phages that have originated from the bone marrow [52].
Similar to macrophages, PD-1 expressing human DC
have been shown to limit anti-tumour immunity by

suppressing CD8+ T cell IL-2 and IFN-γ production
[53]. Engagement of PD-1 on macrophages and DC can
have pleiotropic effects leading to enhanced rather than
suppressed immune responses. This is based on the ob-
servation that PD-1 can bind PD-L1 expressed by the
same cell in cis, therefore, limiting the availability of PD-
L1 on the APC [54] (Fig. 1, bottom right panel). This cis
interaction of PD-1:PD-L1 is an additional functional
mechanism used within the PD-1 pathway, in addition
to the more common method of trans activation re-
ported in the previous section above. A small population
of peripheral blood B cells also express PD-1. While
there is a paucity of evidence, initial studies show that B
cell PD-1 expression is a result of B cell receptor (BCR)
engagement and dampens down BCR mediated signal-
ling by recruitment of SHP-2 [55] (Fig. 1, bottom left
panel). PD-1 expressing B cells have also been shown to
accumulate in thyroid tumours, and while they do not
express higher IL-10 than PD-1 negative B cells, they
were able to suppress T cell responses in a PD-1:PD-L1
dependent manner [56].

PD-1 and metabolism
It is now widely appreciated that the activation, prolifer-
ation and effector functions of immune cells are intrin-
sically linked to cellular metabolism. Cellular
bioenergetics are adapted towards the specific functional
requirements of the cell, and in addition to meeting cel-
lular ATP demands, also provide biosynthetic intermedi-
ates. In the context of autoimmune disease, specifically
Rheumatoid Arthritis (RA) and Psoriatic Arthritis (PsA),
we and others have shown that altered cellular bioener-
getics due to mitochondrial dysfunction, oxidative stress
and hypoxia, drive pro-inflammatory processes in the
synovial tissue in inflamed diarthrodial joints. Moreover,
nutrient supply and signalling pathways such as HIF-1α,
NFκB, Notch-1 and JAK-STAT have also been shown to
mediate metabolic changes in RA [57–59]. While princi-
pally the main role of the PD-1 pathway is to act as an
inhibitory receptor for immune responses, reports are
now emerging of a potential role for the PD-1:PD-L1
axis in metabolism. While activated T cells undergo
rapid metabolic reprogramming to glycolysis to support
their proliferation and effector functions, studies have
shown that following PD-1 ligation, activated T cells no
longer utilise glycolysis, glutaminolysis or metabolism of
branched-chain amino acids, but instead use fatty acid
oxidation (FAO) to generate energy [60]. Moreover, PD-
1 ligated T cells display a significant decrease in their ex-
pression of the glucose transporter Glut1, therefore
impairing their ability to take up glucose (Fig. 1, top
right panel). Patsoukis et al. demonstrated a reduction in
the extracellular acidification rate (ECAR) and oxygen
consumption rate (OCR) in PD-1 stimulated T cells,
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indicating an overall reduction in the ability of the cells
to generate energy when glucose is the energy source.
Furthermore, PD-1 activated T cells have increased
spare respiratory capacities (SRC), thus enabling contin-
ued ATP production under increased cellular stress.
Moreover, additional studies have demonstrated a reduc-
tion in cellular glycolysis following PD-1 ligation in vivo.
Bengsch et al. explored the role of PD-1 signalling in
exhausted CD8+ T cells during chronic lymphocytic
choriomeningitis virus (LCMV) infection. They demon-
strated that exhausted T cells had reduced oxidative
phosphorylation, decreased glucose uptake and reduced
glycolysis, mediated in part, by the PD-1 pathway [61].
Oganda et al. recently suggested the mitochondria itself
may be the main target of the PD-1 inhibitory pathway.
The authors reported a reduction in mitochondrial
polarization and a decrease in several genes involved in
mitochondrial structure and function in CD8+ T cells
following PD-1 stimulation. Importantly, this led to a de-
crease in the number and length of mitochondrial cris-
tae, suggesting an impairment in glucose metabolism
may be in part due to mitochondrial dysfunction [62].

The PD-1 pathway in inflammatory arthritis
The PD-1:PD-L1 axis has been examined in Inflamma-
tory Arthritis in an effort to understand how negative
regulators function in the context of chronic inflamma-
tion. The expression of PD-1 and its ligand PD-L1 are
upregulated in the RA synovium within lymphoid aggre-
gates of the sub lining layer. We previously examined
the PD-1:PD-L1 pathway within RA disease progression
and subsequently demonstrated a significant increase in
synovial PD-1 expression in early and established RA
compared to both healthy control and Osteoarthritis
(OA) synovial tissue. Furthermore, the expression of the
PD-1 ligands, PD-L1 and PD-L2 were significantly in-
creased in both early and established RA as well as arthral-
gia and undifferentiated IA [63]. Previous studies have
also confirmed that histological expression of PD-1 corre-
lates with the degree of synovial inflammation [64]. sPD-1
has also been detected in RA and PsA synovial fluid and
serum, while being absent in OA [65]. sPD-1 levels are
also increased in the serum of ACPA-positive but not
ACPA-negative RA patients [63]. Interestingly, PD-1 has
also been detected within extracellular vesicles (EV) in RA
plasma and synovial fluid [66]. We and others have identi-
fied PD-1 expression on CD4+ and CD8+ T cells within
the RA and PsA synovium [63, 65, 67, 68]. The frequency
of PD-1 expressing CD4+ and CD8+ T cells is also signifi-
cantly elevated in RA synovial fluid compared to RA per-
ipheral blood [69]. Here, the expression of PD-1 on these
synovial fluid T cells correlates with disease activity [69].
Interestingly, PD-1 expression is absent on OA synovial T
cells, suggesting its expression may be involved in IA

pathogenesis rather than merely a consequence of inflam-
mation [70]. Within the periphery, a decrease in the per-
centage of circulating CD4+ and CD8+ PD-1+ cells in the
blood of PsA and RA patients, respectively, has also been
reported [71, 72]. In the context of myeloid cells, PD-L1 is
expressed on synovial fluid CD1c+ dendritic cells [68], in
addition to synovial fluid macrophages [67]. Moreover,
PD-1−/− mice develop more severe arthritis, while PDL-
1.Fc treatment can inhibit the development of collagen in-
duced arthritis (CIA) [64] and polymorphisms in PD-1 are
associated with increased risk of developing RA [73]. To
date, no previous studies have directly examined the effect
of biologic or disease-modifying antirheumatic drugs
(DMARD) treatment on the PD-1:PD-L1 axis in IA. How-
ever, the role that the therapeutically targeted cytokines,
TNFα and IL-6 have on the PD-1 pathway has previously
been examined by Bommarito et al. This study demon-
strated that while PD-L1 activation in healthy CD4+ T
cells results in decreased T cell proliferation, this effect is
abrogated in the presence of the pro-inflammatory cyto-
kines TNFα, IL-6 or IL-1β. Moreover, upon addition of
the anti-TNFα drug adalimumab, anti-IL-6R drug toci-
lizumab or anti-IL-1β mAb, these cytokine-mediated ef-
fects are reversed and PD-L1 mediated T cell suppression
is restored [65]. Furthermore, we previously demonstrated
that the gene signature induced by the antagonistic anti-
PD-1 antibody, nivolumab (representing genes enriched as
a result of inhibition on the PD-1:PD-L1 axis), is enriched
in early and established RA patients. Upon examination of
the effect of treatment on this enrichment, we noted a re-
duction in this enrichment signature in early RA synovial
tissue following DMARD treatment, suggesting that
DMARD treatment may normalise the PD-1 pathway in
RA [63].
While the overexpression of the PD-1 pathway in RA

may appear contradictory given the persistence of acti-
vated and proliferating T cells within the synovium,
Wan et al. also provide evidence to justify this corollary.
High levels of sPD-1 were identified in RA synovial fluid,
which can antagonise the function of PD-1+ T cells.
Studies by Bommarito et al. confirmed these findings in
RA and subsequently reported similar results in PsA,
whereby increased sPD-1 in PsA SF may counteract PD-
1 mediated T cell suppression [65]. Furthermore, upon
examination of the function of PD-1+ T cells in RA,
Raptopoulou et al. demonstrated a less pronounced PD-
1 mediated reduction in T cell proliferation in RA syn-
ovial T cells compared to peripheral blood, suggestive
that T cells within the synovium may be more resistant
to PD-1 mediated suppression [64]. Moreover, we have
previously reported a lack of PD-L1 positive cells in the
RA synovium, and as mentioned above, a decrease in the
PD-1 pathway gene signature in RA (i.e. enrichment of
the nivolumab gene signature). Taken together, our data
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and that of others suggest that although PD-1 is present,
the pathway may be dysfunctional or indeed the ligand
may not be readily available within the RA synovium
[63, 64]. A recent study by Sugiura et al. elegantly dem-
onstrated that high expression of CD80 on DC can re-
strict the PD-1 pathway during T cell activation [74].
The binding of CD80 to PD-L1 in cis on DC can subse-
quently interfere with the ability of PD-L1 to access PD-
1 on T cells. Given that high levels of CD80 on DC has
previously been reported within the IA synovium, one
could hypothesize that a CD80:PD-L1 interaction similar
to that reported by Sugiura et al. could inhibit the PD-1
pathway in IA [75]. Taken together, we have depicted
the potential contributions that the PD-1:PD-L1 axis
may have in the pathogenesis of joint inflammation in
IA in Fig. 2. As highlighted above, previous studies have
demonstrated a potential role for PD-1 signalling in cel-
lular bioenergetics, however, limited data exists on the
bioenergetic requirements of PD-1+ cells in IA. Given
that PD-1+ cells in the synovium are resistant to PD-1
mediated suppression and do not appear to have an
exhausted phenotype, it is tempting to hypothesize that

the metabolic requirements of these cells may be aber-
rant to the metabolic profiles previously reported in in-
fection models. Indeed, Petrelli et al. examined the
metabolism of PD-1+ and PD-1− CD8+ T cells in syn-
ovial fluid and demonstrated that PD-1+ T cells had in-
creased rates of glycolysis compared to PD-1− T cells
[76].

Immune- related adverse events
To date, antibodies to therapeutically target the PD-1:
PD-L1axis have been approved for the treatment of a
variety of cancers in the metastatic and adjuvant setting,
including melanoma, non-small cell lung cancer (NSCL
C), renal cell carcinoma (RCC), Hodgkin’s lymphoma,
bladder cancer, head and neck squamous cell carcinoma
(HNSCC), Merkel-cell carcinoma, and microsatellite
instable-high (MSI-H) or mismatch repair-deficient
(dMMR) solid tumours. There are currently five FDA-
approved immune checkpoint inhibitors targeting PD-1
(nivolumab, pembrolizumab), or PD-L1 (atezolizumab,
durvalumab and avelumab). ICIs such as these have
revolutionised the treatment of cancers by significantly

Fig. 2 The PD-1 pathway in Inflammatory Arthritis. Despite increased expression of PD-1 by CD4+ and CD8+ T cells in the synovial tissue of RA
patients, increased sPD-1 and PD-1 carrying EV could inhibit PD-1 mediated T cell suppression. Additionally, availability of PD-L1 by synovial DC
could be limited due to increased expression of CD80 and the binding of CD80 to PD-L1 in cis, therefore, reducing the functionally
available PD-L1
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improving disease-free survival (DFS) and progression-
free duration. However, a caveat of ICI therapy and
boosting anti-tumour immune responses is the develop-
ment of self-reactive T cells which can lead to the induc-
tion of various autoimmune or inflammatory diseases,
referred to as immune- related adverse events (irAEs).
IrAEs are distinct from chemotherapy induced side ef-
fects and can persist even after ICI cessation [77]. One
such irAE which is becoming increasingly reported, is
Inflammatory Arthritis. While exploration into this area
is increasing, long term studies and large study cohorts
are limited. Indeed, the first description of RA occurring
after ICI treatment was in 2017, highlighting the novelty
of this research area [78]. In addition to IA, sicca syn-
drome, myositis, vasculitis and polymyalgia rheumatica
represent additional rheumatological irAEs, however IA
irAEs appear to be the most common [79–81]. One
study reported the development of arthralgia in 13.3% of
patients treated with pembrolizumab or nivolumab for
metastatic cutaneous malignancies [82], while others
prospectively demonstrated the development of IA in
3.8% of patients treated with anti-PD-1: PD-L1 anti-
bodies [83]. Although other irAEs such as colitis, pneu-
monitis and hypophysitis can develop early during ICI
treatment, ICI induced IA possibly develops later in the
course of immunotherapy and presents initially with
small joint involvement similar to RA [84]. One study
reported the manifestation of IA within 6–24months
following commencement of ICI therapy [85]. In those
patients who go on to develop IA as a result of ICI treat-
ment, Braaten et al. report that even after cessation of
immunotherapy, IA persists [77]. Moreover, this persist-
ent arthritis was less likely to improve in patients with
longer ICI treatment duration and in those receiving
combination ICI therapy (anti-CTL4 and anti-PD-1).
Interestingly, reports of rheumatic irAEs in patients re-
ceiving anti-CTLA-4 immunotherapy are rare, suggestive
of a more potent role for PD-1 in rheumatology related
irAEs [86]. Treatment of IA in this unique cohort of pa-
tients may prove challenging given the need to adminis-
ter immunosuppressive drugs to patients who have
previously received immunostimulatory treatments.
Hydroxychloroquine (HCQ) was examined as a first line
DMARD in a single centre retrospective observational
study. The authors used HCQ as a first-line steroid-
sparing agent and reported improvements in IA symp-
toms within their small sample size [87]. In another
small case series, Kim et al. report a significant improve-
ment in ICI induced polyarthritis symptoms in three pa-
tients in response to tocilizumab [88]. An important
unanswered question remains whether use of these im-
munosuppressive drugs can affect tumour progression.
However, early reports appear to be promising. Cappelli
et al. demonstrated in a cohort of 60 patients with

rheumatological irAEs, that there was no statistically sig-
nificant increased risk of tumour progression following
immunosuppressive treatment. The authors reassuringly
reported no change in tumour response in patients
treated with either DMARDs or TNF inhibitors [77]. In
addition to ICI induced IA, patients may also concur-
rently develop additional non–rheumatological related
irAEs. Cappelli et al. demonstrated within a cohort of 30
ICI induced IA patients, 31% also developed colitis,
while thyroid disease, pneumonitis and skin rash were
also described within their cohort. These studies demon-
strate how rheumatological irAEs can be successfully
managed in cancer patients. However, future work
should aim to examine therapeutic approaches that will
minimize the risk of even developing irAEs in cancer pa-
tients undergoing anti-PD-1 treatment. While research
into this area is limited, a recent encouraging study by
Perez-Ruiz et al. suggests that prophylactic biologic
treatment in patients receiving PD-1 immunotherapy
may minimise the risk of developing irAEs. Specifically,
the authors demonstrated that prophylactic blockade of
TNFα before commencing anti-PD-1 (and anti-CTLA4)
therapy prevents irAEs (specifically colitis) in mouse
models. Importantly, the authors also report that
addition of anti-TNFα therapy may also enhance the
anti-tumour effects of the PD-1 treatment [89].

Conclusion
PD-1 is a pleiotropic molecule with a wider than initially
described cellular distribution and function. While cer-
tain facets of the role of PD-1 in fine-tuning T cell re-
sponses have been studied extensively, there is a recent
growing appreciation of the role of PD-1 in metabolism
and cancer. Multiple studies have confirmed both the
expression of PD-1 within the IA synovium and its cor-
relation with disease activity or synovitis. It is therefore
logical to assume that in the context of chronic inflam-
mation in the joint, the inhibitory role of PD-1 on T cell
function is dysregulated or indeed absent. Furthermore,
the emergence of IA irAEs in patients receiving PD-1:
PD-L1 immunotherapy underscores the role diminished
PD-1 signalling may have in the pathogenesis of IA. Im-
portantly, the function of PD-1 in IA may be unique to
other coinhibitory receptors or checkpoint inhibitors
given that rheumatic irAEs have not been reported in
patients receiving anti-CTLA-4 immunotherapy. Future
studies should aim to delineate the function of PD-1
within the IA synovium to better understand how IA
irAEs develop and can subsequently be prevented or
treated.
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